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Abstract

This paper presents methods which enable the use
of passivity-based control design techniques to control
non-passive systems. For inherently non-passive finite-
dimensional linear time-invaraint systems, passification
methods are presented to render such systems passive by
suitable compensation. The passified system can then be
controlled by a class of passive linear controllers. The idea
is to exploit the robust stability properties of passivity-based
control laws for uncertain systems. The proposed passifica-
tion methods are demonstrated by application to the ACC
benchmark problem and to pitch-axis control of an F-18
High Alpha Research Vehicle (HARV) model.

1 Introduction

A number of stability results exist in the literature for
the control of naturally passive systems. Some examples
of such systems include large flexible space structures or
multilink flexible robots with collocated actuators and sen-
sors [Kel.96]. For such systems, model-based controllers are
often found to be extremely sensitive to parametric uncer-
tainties[Jos.89]. Passivity-based controllers, however, have
proven to be highly effective in robustly controlling such
plants. Being model-independent, such controllers are ro-
bust to modeling errors and parametric uncertainties. For
non-passive systems, however, passivity-based control tech-
niques cannot be used directly. One way of making non-
passive systems amenable to passivity-based control is to
render such systems passive, i.e., to passify them using a
suitable compensation. The compensated plant can then
be robustly controlled by any marginally strictly positive-
real (MSPR) controller [Jos.96). This technique essentially
converts the problem of robust controller design into the
problem of robust passification which in some cases may be
easier to accomplish. The numerical examples given in this
paper can help demonstrate this concept more clearly.

A brief overview of robust stability results for passive sys-
tems is first presented, followed by four passification meth-
ods which include series, feedback, combination of series
and feedback, and feedforward compensation. The proposed
methodology is then demonstrated by application to the
ACC benchmark problem and to the longitudinal control of
an F-18 High Alpha Research Vehicle (HARV) model.

2 Stability of Passive Systems
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The notion of passivity is one of the oldest in the network
theory literature. For linear time-invariant (LTI) systems
passivity is equivalent to the positive-realness of system’s
transfer function. It is well known that a positive-real (PR)
system is robustly stabilized by a strictly PR (SPR) con-
troller. However, various definitions of SPR systems exist
in the literature, for example, see [J0s.96]. The weakest SPR
systems known to date are referred to as marginally strictly
positive-real (MSPR) systems [Jo0s.96]. An m x m rational
matrix G(s) is said to be marginally strictly positive real if
it is positive real, and

G(jw) + G*(jw) > 0 for w € (—oc, o). (1)

Numerous stability results exist [Hil.94] on the feedback in-
terconnection of two passive systems. For the LTI case, it
was proved in [Jos.96] that the negative feedback intercon-
nection of G(s) and H(s) is asymptotically stable if (i) G(s)
is MSPR, (ii) H(s) is PR, and (iii) None of the jw -axis
poles of G(s) is a transmission zero of H(s).

The appealing feature of passivity-based control laws is
the stability robustness to model uncertainties including un-
modeled dynamics and parametric uncertainties. If a non-
passive system is robustly passified (i.e., if it remains passive
in the presence of model uncertainties), then it can be ro-
bustly stabilized by any MSPR controller.

3 Passification Methods

Application of passivity-based methods to non-passive
systems has been addressed in the literature [Bar.87],
[Kau.94], [Sun.94]. Much of the literature, however, has fo-
cused on “almost strictly PR” (ASPR) systems, which are
systems that can be passified by sufficiently high constant-
gain output feedback. Such systems represent a rather re-
strictive class since they have to be stable and minimum-
phase, and cannot have a relative degree of more than one.

In this section, we present four passification methods
which can be used to passify LTI non-passive single-input,
single-output (SISO) systems. For many non-passive sys-
tems (e.g., systems with relative degree > 1) passification
by a proper compensator may not be possible; however, it
may be possible to obtain a compensation that can keep the
phase of the system within £90° in a finite frequency range
of interest. Such systems will be referred to as Band-Limited

Positive Real (BLPR) systems.
3.1 Series Compensation

Consider the block diagram shown in Fig. 1 wherein the
plant P(s) is non-passive. The idea of series passification is
to design a compensator C,(s) such that the compensated



plant P.(s) = P(s)C,(s) is positive-real. (For multi-input,
multi-output (MIMO) plants, both right and left multipliers
can be used). For the SISO case, the compensated system
is passive if the phase of P.(s) remains within £90° for all
frequencies. For stable minimum-phase systems which have
a relative degree of zero or one, the violation of phase con-
dition can take place only over a finite or semi-finite range
of frequencies. For such systems, a “proper” series com-
pensation can be obtained which can render these systems
positive-real.

An intuitive yet important observation that can be made
is that a positive-real transfer function cannot have two con-
secutive occurrences of poles or zeros, i.e., it should have
an alternating pole-zero pattern. For example, consider a
SISO plant with distinct poles and zeros that are only on
the imaginary axis. For such a plant to be PR its poles and
zeros must alternate. Thus, a series compensator can be
designed to insert poles/zeros at appropriate locations. In
the case of real poles and zeros, a similar observation can
be made. In fact, the maximum phase contribution by a

pole-zero pair (:—i%)can be shown to be equal to ¢,,, where:

_ -z
bm = tan 1(;’\/p_z).

Then, positive-realness of a plant having only real
poles/zeros can be ensured by restricting sum of all such
maximum phase contributions to +90°. Similarly, for plants
with complex-conjugate poles and zeros, a similar phase
computation, although cumbersome, can be done using the
closed-form expressions. For general plants which have real,
imaginary, and complex poles and zeros, it was found in a
number of examples that alternating pole-zero pattern of
both real and imaginary parts resulted in positive realness.
With this insight, one of the techniques to obtain a series
passification is to select a compensator whose pole-zero pat-
tern along with plant’s poles and zeros forms an alternating
pole-zero pattern. An alternate method is to inspect the
Bode diagram of P(s) and to compute the phase required to
make P.(s) PR. Limitations of series compensation are that
it cannot passify unstable or non-minimum phase plants,
and plants having repeated poles or zeros on the imaginary
axis. For systems with relative degree greater than one, the
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Figure 1: Series Compensation

series passification would have to be improper. For physi-
cal realizability, however, the compensation must be made
proper by placing high frequency poles that are sufficiently
outside the closed-loop bandwidth, which results in a BLPR
system. Such high frequency dynamics can then be mod-
eled as multiplicative uncertainty and the controller design
can be obtained to ensure robustness to these unmodeled
dynamics.

Another technique for series passification is the formu-
lation of the problem in the LMI (linear matrix inequal-
ity) setting based on the Kalman-Yakubovich lemma. This

approach can also be used for multi-input multi-output
(MIMO) systems to yield left- and right-series compen-
sators. This approach is not discussed in this paper.

3.2 Feedback Compensation

As stated previously, certain non-passive systems such as
unstable systems or systems having repeated poles/zeros on
the imaginary axis, cannot be passified by series compensa-
tion alone. For such systems, passification can sometimes be
achieved by feedback compensation (Fig. 2). For minimum-
phase systems, the condition for passification by feedback
compensation can be easily derived as:

- Re(P(jw))

Re(C¢(jw)) 2 PG

Another example of sytems where feedback compensa-
tion can be used for passification is ASPR systems
[Bar.87],[Kau.94], which can be passified by a constant-gain
output feedback. The problem of feedback passification can
also be formulated in the LMI setting as shown in [Sun.94].
Such a compensation is also robust [Gu.90] to uncertainties
which satisfy certain boundedness condition. Although this
result guarantees that a constant feedback gain can passify
such systems, the feedback gain required in some cases could
be very large.

Figure 2: Feedback Compensation

3.3 Hybrid Compensation

In certain cases, solely series or solely feedback passifica-
tion may not be possible or desirable. For example, the
feedback gain required to passify certain ASPR systems
may be very large or, in some cases, the series passifica-
tion alone may be very sensitive to plant variations. In
such cases, a hybrid compensator which is a combination
of series and feedback passification, may be more desirable.
Figure 4 shows the configuration for hybrid compensation.
In preliminary numerical trials, it has been found that hy-
brid compensation significantly increases the robustness of
series passification. An alternate configuration for hybrid
passification would include C,(s) inside the feedback loop.
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Figure 3: Hybrid Compensation



3.4 Feedforward Compensation

For certain systems, such as non-minimum phase systems
or systems with high relative degree, the first three passifi-
cation methods cannot be used. To passify such systems, a
possible solution is to use feedforward compensation D(s)
(Bar.87], [Kau.94] as shown in Fig. 4. If D is a constant ma-
trix, it has the effect of reducing the relative degree of the
modified system to zero. In general, D(s) does not have to
be a constant matrix but can be a proper transfer function.
The condition for passification would be to obtain trans-
fer function D(s) such that Re(P(jw)) + Re(D(jw)) > 0
Yweée (0,00).

Pe(s)
= S

Figure 4: Feedforward Compensation

4 Numerical Examples

Two numerical examples are given to demonstrate the
use of some of the passification methods for obtaining ro-
bust controller design. It is also shown that in certain cases
one type of passification method alone is not adequate for
passification and the combination of different methods may
be warranted.

4.1 ACC Benchmark Problem

The “ACC Benchmark Problem” [Wie.92] consists of two
masses (m; and m2) attached by a single spring with stiff-
ness k, moving on a friction-free horizontal surface (Figure
5). This fourth-order system has one rigid-body mode and
one undamped elastic mode. The control input is the force
u applied to m;, and the output y is the position of ms,.
In addition, two disturbance forces w, and w, act on the
masses. The transfer function from u to y is given by:

k
my1s2{mzs? +[1 + 2]k}

P(s) = (2)

The nominal values of my, m2, and k are unity. The problem
is to design a controller which will robustly stabilize the
system for values of k between 0.5 and 2.0. It is also desired
that the impulse response from w; and w, to the position
output y should have a settling time of about 15 seconds.
The relative degree of P(s) is four and the system is
clearly not passive. It has a double pole at the origin and
a pair of purely imaginary poles at s = +51.414. In order
to design a passivity-based controller, the system has to be
“passified”. To keep the phase between +90°, the poles and
zeros on the imaginary axis must be interlaced. Therefore,
the double-pole of the origin must be moved. This cannot
be accomplished by series compensation. However, simple
constant-gain negative feedback (Cf(s) = ) can easily ac-
complish this. A feedback gain v = 0.135 was chosen, which
moved the poles from the origin to +70.265. The poles
at +371.414 moved slightly closer to the origin. To passify
the resulting system, zeros must be introduced between the

imaginary axis poles. A series compensator was chosen to
have zeros at s = 0 and +30.55. The compensator must,
however, be proper; therefore, it was chosen as:

s(s? +0.55%)
(Tes+1)2

The value of T. was chosen as 0.01 by trial and error to
obtain passification in the frequency range of interest. The
passification must be designed to be robust, i.e., the com-
pensated system must remain passive for all values of the
spring stiffness k in the given range. Variation of & would
cause the imaginary axis poles to move. As long as the poles
remain interlaced with the zeros, the positive realness will
be retained. The resulting pole-zero map is shown in Fig-
ure 6, which also shows the variation of the poles as k varies
between 0.5 and 2.0. Only the poles at 431.414 undergo
significant variation. The poles do not cross the zeros, and
hence the passification is robust.

This system, passified using hybrid feedback/series com-
pensation, is only approrimately positive real (BLPR). Fig-
ure 7 shows the Bode plot of C, P(1++vP)~! which indicates
that the phase remains within +:90° up to nearly 5 rad/sec
frequency, i.e., the sytem has been rendered “passive” only
in a finite frequency range. A check of the Bode plots also
confirms that the system’s phase remains within 390° for
up to 5 rad/sec frequency as k varies within its range.

Because the (ideal) passified system is positive real, it can
be stabilized by any MSPR controller, the simplest being a
constant gain. After a few trial response computations, the
constant gain ypr was chosen to be 2.75. The responses
due to unit impulse disturbance inputs for the nominal case
(k=1)and for perturbed values of k are shown in Figures 8
and 9. The responses are satisfactory, with a settling time
of approxomately 15 seconds for the nominal case. There
is very little degradation of the resonse due to variation of
k; that is, the controller provides robust stability as well
as performance. A more systematic way to ensure robust-
ness of the design is to represent the compensated plant as
(1+A)P. where Pe = P(14+vP)™'[ks(s? 40.55%)] and mul-
tiplicative uncertainty A = (TT:_H—); —1. Then the sufficient
condition for stability of feedback loop of Figure 10 in the
presense of multiplicative uncertainty is given by

C,(S) = (3)

1
TrrrPe(l + 17rPo) (j)]

In an attempt to improve the performance further, an
optimal LQG controller, which is restricted to be weakly
SPR (WSPR) [Loz.90], was next designed for the hybrid-
passified system. The LQG weights were varied to obtain
good performance. However, the best performance obtained
by WSPR LQG controller was no better than that obtained
by the constant-gain controller. Therefore, for this problem,
a simple controller employing third-order compensation (for
realizable passification), can provide robust stability as well
as performance.

T(A(w)) < V real w.

4.2 Flight Control Design Using Passification

A mathematical model of an F-18 HARV configuration
[Ost.94] is used as a second example to demonstrate the
effectiveness of passivity-based control design methodology



described above for non-passive systems. The HARV con-
figuration is a modified version of an F-18 airplane model
which includes multi-axis thrust vectoring capability for
pitch and yaw control power. The longitudinal models for
pitch-axis control of HARV for four different flight condi-
tions at the altitude of 15,000 ft are considered as focus
configurations for controller design. The four configurations
had the following combinations of speed and vertical accel-
eration, respectively: (1) 0.7 Mach and 1g, (2) 0.6 Mach
and 1g, (3) 0.49 Mach and 1g, and (4) 0.3 Mach and 0.37g.
The controller design was obtained based on a nominal 4th-
order plant model for the second flight condition, i.e., alti-
tude of 15,000 ft, speed 0.6 Mach, and acceleration of 1g.
The controller was designed to be robust for varying flight
conditions with Mach number in the range 0.3 to 0.7 and
vertical acceleration in the range 0.37g to 1g. The controller
design process is summarized below.

First, the passification of the nominal plant model was
achieved by using a proper, third-order series compensator
with poles at —10, -.05, and —.0035 and zeros at —1, —0.5,
and —0.08. The passification was chosen so as to be ro-
bust to mach number variation between 0.30 to 0.70 and
g-variation between .37 to 1, i.e., a single series compen-
sator was obtained which could passify plant models at all
four flight conditions. The flight conditions represent a large
variation in the parameters. For example, the short-period
frequency (eigenvalue) variation for these flight conditions
was between 0.79 and 2.71 rad/sec. Figure 11 shows phase
plots of the passified plants. Having robustly passified the
plant, a short-period approximation of the plant was used as
the design model for the plant. An LQG-optimal, fifth-order
WSPR controller [Loz.90] was then designed for the design
flight condition to obtain satisfactory response. The final
controller was a combination of the passifying series com-
pensator and the LQG-optimal WSPR compensator. The
controller design was found to give satisfactory response
even for the other three flight conditions. Figure 12 shows
step responses for the four flight conditions using this fixed
eigth-order controller.

Robust Gain-Scheduling via Convex Combination
of PR Controllers-Once a plant is robustly passified, the
passifying compensation can be fixed, but the WSPR feed-
back controller can be tuned to each model (for each flight
condition). The following fact can then be used to obtain
robust gain-scheduling and consistent performance.

Fact- A convex combination of PR (WSPR) systems is PR
(WSPR).

To obtain optimal performance at all four flight condi-
tions, LQG-optimal WSPR controllers [C;(s),: =1, 2, 3,
4] can be designed, and a controller of the form: C(s) =
Z;l a:Ci(s) where the coefficients a; > 0; (Z;l o; =1)
are chosen corresponding to the actual flight condition
which may be in-between the four given flight conditions.
This approach was followed with two controllers correspond-
ing to flight conditions (2) and (4) (since (1) is quite close
to (2) and (3) is close to (4)). The resulting controller gave
guaranteed stability and satisfactory performance for all
four flight conditions and also for intermediate flight con-
ditions. The order of such a controller is the sum of the
orders of Ci(s)’s.

5 Concluding Remarks

Methods for extending passivity-based controller design
techniques to non-passive systems were investgated. In par-
ticular, series, feedback, hybrid, and feedforward passifi-
cation were discussed. It was shown that a robust gain-
scheduling controller can be obtained by using a convex
combination of weakly strictly positive real controllers. The
methods were applied to two example problems, and were
shown to provide satisfactory robust control. Future work
should address extension of the methods to multi-input
multi-output systems, and the development of more sys-
tematic methods for robust passification.
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Figure 6: Pole-zero map of passified system
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Figure 7: Bode plot of passified system
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o
N

©
&

o.1f/ Model 1 ]
; ~— Modet 2
- - Model 3
0054 - -~ Model 4 1
) 1 2 4 5 6

3
time {sec)

Figure 12: Step response of systems

50




